skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spasojevic, Marko_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is altering interactions among plants and pollinators. In alpine ecosystems, where snowmelt timing is a key driver of phenology, earlier snowmelt may generate shifts in plant and pollinator phenology that vary across the landscape, potentially disrupting interactions. Here we ask how experimental advancement of snowmelt timing in a topographically heterogeneous alpine-subalpine landscape impacts flowering, insect pollinator visitation, and pathways connecting key predictors of plant-pollinator interaction. Snowmelt was advanced by an average of 13.5 days in three sites via the application of black sand over snow in manipulated plots, which were paired with control plots. For each forb species, we documented flowering onset and counted flowers throughout the season. We also performed pollinator observations to measure visitation rates. The majority (79.3%) of flower visits were made by dipteran insects. We found that plants flowered earlier in advanced snowmelt plots, with the largest advances in later-flowering species, but flowering duration and visitation rate did not differ between advanced snowmelt and control plots. Using piecewise structural equation models, we assessed the interactive effects of topography on snowmelt timing, flowering phenology, floral abundance, and pollinator visitation. We found that these factors interacted to predict visitation rate in control plots. However, in plots with experimentally advanced snowmelt, none of these predictors explained a significant amount of variation in visitation rate, indicating that different predictors are needed to understand the processes that directly influence pollinator visitation to flowers under future climate conditions. Our findings demonstrate that climate change-induced early snowmelt may fundamentally disrupt the predictive relationships among abiotic and biotic drivers of plant-pollinator interactions in subalpine-alpine environments. 
    more » « less
  2. ABSTRACT Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics ofApilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary beeOsmia lignaria(Megachilidae) and the plantPhacelia tanacetifolia(Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers. 
    more » « less
  3. ABSTRACT Climate change is altering precipitation regimes that control nitrogen (N) cycling in terrestrial ecosystems. In ecosystems exposed to frequent drought, N can accumulate in soils as they dry, stimulating the emission of both nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas) when the dry soils wet up. Because changes in both N availability and soil moisture can alter the capacity of nitrifying organisms such as ammonia‐oxidizing bacteria (AOB) and archaea (AOA) to process N and emit N gases, predicting whether shifts in precipitation may alter NO and N2O emissions requires understanding how both AOA and AOB may respond. Thus, we ask: How does altering summer and winter precipitation affect nitrifier‐derived N trace gas emissions in a dryland ecosystem? To answer this question, we manipulated summer and winter precipitation and measured AOA‐ and AOB‐derived N trace gas emissions, AOA and AOB abundance, and soil N concentrations. We found that excluding summer precipitation increased AOB‐derived NO emissions, consistent with the increase in soil N availability, and that increasing summer precipitation amount promoted AOB activity. Excluding precipitation in the winter (the most extreme water limitation we imposed) did not alter nitrifier‐derived NO emissions despite N accumulating in soils. Instead, nitrate that accumulated under drought correlated with high N2O emission via denitrification upon wetting dry soils. Increases in the timing and intensity of precipitation that are forecasted under climate change may, therefore, influence the emission of N gases according to the magnitude and season during which the changes occur. 
    more » « less